Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2309969121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498708

RESUMO

In this study, we model and predict rice yields by integrating molecular marker variation, varietal productivity, and climate, focusing on the Southern U.S. rice-growing region. This region spans the states of Arkansas, Louisiana, Texas, Mississippi, and Missouri and accounts for 85% of total U.S. rice production. By digitizing and combining four decades of county-level variety acreage data (1970 to 2015) with varietal information from genotyping-by-sequencing data, we estimate annual historical county-level allele frequencies. These allele frequencies are used together with county-level weather and yield data to develop ten machine learning models for yield prediction. A two-layer meta-learner ensemble model that combines all ten methods is externally evaluated against observations from historical Uniform Regional Rice Nursery trials (1980 to 2018) conducted in the same states. Finally, the ensemble model is used with forecasted weather from the Coupled Model Intercomparison Project across the 110 rice-growing counties to predict production in the coming decades for Composite Variety Groups assembled based on year of release, breeding program, and several breeding trends. Results indicate positive effects over time of public breeding on rice resilience to future climates, and potential reasons are discussed.


Assuntos
Oryza , Oryza/genética , Mudança Climática , Melhoramento Vegetal , Clima , Tempo (Meteorologia)
2.
Comput Urban Sci ; 3(1): 22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274379

RESUMO

Cities need climate information to develop resilient infrastructure and for adaptation decisions. The information desired is at the order of magnitudes finer scales relative to what is typically available from climate analysis and future projections. Urban downscaling refers to developing such climate information at the city (order of 1 - 10 km) and neighborhood (order of 0.1 - 1 km) resolutions from coarser climate products. Developing these higher resolution (finer grid spacing) data needed for assessments typically covering multiyear climatology of past data and future projections is complex and computationally expensive for traditional physics-based dynamical models. In this study, we develop and adopt a novel approach for urban downscaling by generating a general-purpose operator using deep learning. This 'DownScaleBench' tool can aid the process of downscaling to any location. The DownScaleBench has been generalized for both in situ (ground- based) and satellite or reanalysis gridded data. The algorithm employs an iterative super-resolution convolutional neural network (Iterative SRCNN) over the city. We apply this for the development of a high-resolution gridded precipitation product (300 m) from a relatively coarse (10 km) satellite-based product (JAXA GsMAP). The high-resolution gridded precipitation datasets is compared against insitu observations for past heavy rain events over Austin, Texas, and shows marked improvement relative to the coarser datasets relative to cubic interpolation as a baseline. The creation of this Downscaling Bench has implications for generating high-resolution gridded urban meteorological datasets and aiding the planning process for climate-ready cities.

3.
Environ Monit Assess ; 195(2): 324, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692693

RESUMO

Climate change is one of the biggest environmental challenges that significantly impact water resources and the quantity and quality of agricultural products. Assessment of these impacts during the historical period and under future climate is essential for achieving a sustainable agricultural system in the face of climate change threats and water scarcity. In this research, we evaluated the yield and water footprint of rainfed and irrigated wheat during the historical period (1986-2015) and two future periods (2016 to 2055) in a semi-arid environment in Fars province, Iran. The future climate data was selected from the CanESM2 model outputs (bias-corrected and downscaled using the SDSM model) under the RCP4.5 scenario, and the yield projection was made using the AquaCrop model. Our result showed that for both irrigated and rainfed wheat, the yield significantly increases in southern parts of the study area in future climates, primarily because of an increase in effective precipitation. Other regions will experience a marginal yield decrease or no yield changes (in the case of irrigated wheat). Our assessments of the water footprint of wheat production showed a significant reduction in green and blue water footprints in the southern regions. In other regions, various patterns emerged for irrigated and rainfed wheat, but an overall increase was observed. The southern regions of the study area will be more suitable for wheat production owing to the higher yield and lower water footprint.


Assuntos
Mudança Climática , Triticum , Água , Monitoramento Ambiental , Agricultura
4.
Nat Food ; 3(6): 437-444, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118037

RESUMO

The global production of processing tomatoes is concentrated in a small number of regions where climate change could have a notable impact on the future supply. Process-based tomato models project that the production in the main producing countries (the United States, Italy and China, representing 65% of global production) will decrease 6% by 2050 compared with the baseline period of 1980-2009. The predicted reduction in processing tomato production is due to a projected increase in air temperature. Under an ensemble of projected climate scenarios, California and Italy might not be able to sustain current levels of processing tomato production due to water resource constraints. Cooler producing regions, such as China and the northern parts of California, stand to improve their competitive advantage. The projected environmental changes indicate that the main growing regions of processing tomatoes might change in the coming decades.

5.
Environ Res ; 202: 111657, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246638

RESUMO

This work aims to provide insights on the COVID-19 pandemic in three prime aspects. First, we attempted to understand the association between the COVID-19 transmission rate, environmental factors (air pollution, weather, mobility), and socio-political parameters (Government Stringency Index, GSI). Second, we evaluated the efficiency of various strategies, including radical opening, intermittent lockdown, phase lift, and contact tracing, to exit the COVID-19 pandemic and get back to pre-pandemic conditions using a stochastic individual-based epidemiology model. Third, we used a deep learning approach and simulated the vaccination rate and the time for reaching herd immunity. The analysis was done based on the collected data from eight countries in Asia, including Iran, Turkey, India, Saudi Arabia, United Arab Emirates, the Philippines, South Korea, and Russia (as a transcontinental country). Our findings in the first part highlighted a noninfluential impact from the weather-driven parameters and short-term exposure to pollutants on the transmission rate; however, long-term exposure could potentially increase the risk of COVID-19 mortality rates (based on 1998-2017 p.m.2.5 data). Mobility was highly correlated with the COVID-19 transmission and based on our causal analysis reducing mobility could curb the COVID-19 transmission rate with a 6-day lag time (on average). Secondly, among all the tested policies for exiting the COVID-19 pandemic, the contact tracing was the most efficient if executed correctly. With a 2-day delay in tracing the virus hosts, a 60% successful host tracing, and a 70% contact reduction with the hosts, a pandemic will end in a year without overburdening a healthcare system with 6000 hospital beds capacity per million. Lastly, our vaccine simulations showed that the target date for achieving herd immunity significantly varied among the countries and could be delayed to October-november 2022 in countries like India and Iran (based on 60% immunized population and assuming no intermediate factors affecting the vaccination rate).


Assuntos
COVID-19 , Ásia , Controle de Doenças Transmissíveis , Humanos , Pandemias , Políticas , SARS-CoV-2 , Vacinação
6.
Artigo em Inglês | MEDLINE | ID: mdl-33114771

RESUMO

Prior evaluations of the relationship between COVID-19 and weather indicate an inconsistent role of meteorology (weather) in the transmission rate. While some effects due to weather may exist, we found possible misconceptions and biases in the analysis that only consider the impact of meteorological variables alone without considering the urban metabolism and environment. This study highlights that COVID-19 assessments can notably benefit by incorporating factors that account for urban dynamics and environmental exposure. We evaluated the role of weather (considering equivalent temperature that combines the effect of humidity and air temperature) with particular consideration of urban density, mobility, homestay, demographic information, and mask use within communities. Our findings highlighted the importance of considering spatial and temporal scales for interpreting the weather/climate impact on the COVID-19 spread and spatiotemporal lags between the causal processes and effects. On global to regional scales, we found contradictory relationships between weather and the transmission rate, confounded by decentralized policies, weather variability, and the onset of screening for COVID-19, highlighting an unlikely impact of weather alone. At a finer spatial scale, the mobility index (with the relative importance of 34.32%) was found to be the highest contributing factor to the COVID-19 pandemic growth, followed by homestay (26.14%), population (23.86%), and urban density (13.03%). The weather by itself was identified as a noninfluential factor (relative importance < 3%). The findings highlight that the relation between COVID-19 and meteorology needs to consider scale, urban density and mobility areas to improve predictions.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Máscaras , Pandemias , Pneumonia Viral , Tempo (Meteorologia) , COVID-19 , Humanos , Características de Residência , SARS-CoV-2 , Temperatura , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...